skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hersam, Mark_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Detecting electronic hot spots is important for understanding the heat dissipation and thermal management of electronic and semiconductor devices. Optical thermoreflective imaging is being used to perform precise temporal and spatial imaging of heat on wires and semiconductor materials. We apply quantum squeezed light to perform thermoreflective imaging on micro-wires, surpassing the shot-noise limit of classical approaches. We obtain a far-field temperature sensing accuracy of 42 mK after 50 ms of averaging and show that a 256×256 pixel image can be constructed with such sensitivity in 10 min. We can further obtain single-shot temperature sensing of 1.6 K after only 10 μs of averaging, enabling a dynamical study of heat dissipation. Not only do the quantum images provide accurate spatiotemporal information about heat distribution but also the measure of quantum correlation provides additional information, inaccessible by classical techniques, which can lead to a better understanding of the dynamics. We apply the technique to both aluminum and niobium microwires and discuss the applications of the technique in studying electron dynamics at low temperatures. 
    more » « less
  2. Abstract Soft materials with reversible electrical and mechanical properties are critical for the development of advanced bioelectronics that can distinguish between different rates of applied strain and eliminate performance degradation over many cycles. However, the current paradigm in mechano‐electronic devices involves measuring changes in electrical current based on the accumulation of strain within a conductive material that alters the geometry through which electrons flow. Attempts have been made to incorporate soft materials like liquid metals and concentrated solutions of conjugated polymers and salts to overcome materials degradation but are limited in their ability to detect changes in the rate of the applied strain. Herein, the anisotropic electrical performance of a soft semiconducting composite prepared with silver‐coated microspheres dispersed within a swollen copolymer gel is demonstrated. This composite exhibits an electrical response proportional to the magnitude of the applied shear force to enable a rate‐of‐strain dependent conductivity. Furthermore, a 100‐fold increase in the conductivity of the composite is observed when the electric field is oriented parallel to the flow direction. This improvement in the electrical response can be attributed to the enhanced alignment of microspheres in viscoelastic media and can be leveraged in the development of mechanically responsive electronic devices. 
    more » « less
  3. Abstract In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries. 
    more » « less
  4. Abstract Two‐dimensional (2D) antiferromagnetic (AFM) semiconductors are promising components of opto‐spintronic devices due to terahertz operation frequencies and minimal interactions with stray fields. However, the lack of net magnetization significantly limits the number of experimental techniques available to study the relationship between magnetic order and semiconducting properties. Here, they demonstrate conditions under which photocurrent spectroscopy can be employed to study many‐body magnetic excitons in the 2D AFM semiconductor NiI2. The use of photocurrent spectroscopy enables the detection of optically dark magnetic excitons down to bilayer thickness, revealing a high degree of linear polarization that is coupled to the underlying helical AFM order of NiI2. In addition to probing the coupling between magnetic order and dark excitons, this work provides strong evidence for the multiferroicity of NiI2down to bilayer thickness, thus demonstrating the utility of photocurrent spectroscopy for revealing subtle opto‐spintronic phenomena in the atomically thin limit. 
    more » « less
  5. Abstract Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2and MoS2under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p‐type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides. 
    more » « less
  6. Abstract Aerosol jet printing is a popular digital additive manufacturing method for flexible and hybrid electronics, but it lacks sophisticated real‐time process control schemes that would enable more widespread adoption in manufacturing environments. Here, an optical measurement system is introduced to track the aerosol density upstream of the printhead. The measured optical extinction, combined with the aerosol flow rate, is directly related to deposition rate and accurately predicts functional materials properties such as the electrical resistance of printed graphene films. This real‐time system offers a compelling solution for process drift and batch‐to‐batch variability, rendering it a valuable tool for both real‐time control of aerosol jet printing and fundamental studies of the underlying process science. 
    more » « less
  7. Abstract Solution‐processed graphene is a promising material for numerous high‐volume applications including structural composites, batteries, sensors, and printed electronics. However, the polydisperse nature of graphene dispersions following liquid‐phase exfoliation poses major manufacturing challenges, as incompletely exfoliated graphite flakes must be removed to achieve optimal properties and downstream performance. Incumbent separation schemes rely on centrifugation, which is highly energy‐intensive and limits scalable manufacturing. Here, cross‐flow filtration (CFF) is introduced as a centrifuge‐free processing method that improves the throughput of graphene separation by two orders of magnitude. By tuning membrane pore sizes between microfiltration and ultrafiltration length scales, CFF can also be used for efficient recovery of solvents and stabilizing polymers. In this manner, life cycle assessment and techno‐economic analysis reveal that CFF reduces greenhouse gas emissions, fossil energy usage, water consumption, and specific production costs of graphene manufacturing by 57%, 56%, 63%, and 72%, respectively. To confirm that CFF produces electronic‐grade graphene, CFF‐processed graphene nanosheets are formulated into printable inks, leading to state‐of‐the‐art thin‐film conductivities exceeding 104S m−1. This CFF methodology can likely be generalized to other van der Waals layered solids, thus enabling sustainable manufacturing of the diverse set of applications currently being pursued for 2D materials. 
    more » « less
  8. Abstract Printed 2D materials, derived from solution‐processed inks, offer scalable and cost‐effective routes to mechanically flexible optoelectronics. With micrometer‐scale control and broad processing latitude, aerosol‐jet printing (AJP) is of particular interest for all‐printed circuits and systems. Here, AJP is utilized to achieve ultrahigh‐responsivity photodetectors consisting of well‐aligned, percolating networks of semiconducting MoS2nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high‐aspect‐ratio (≈1 μm lateral size) MoS2nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high‐boiling‐point solvent terpineol into the MoS2ink is critical for achieving a highly aligned and flat thin‐film morphology following AJP as confirmed by grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi‐ohmic contacts and photoactive channels with responsivities exceeding 103 A W−1that outperform previously reported all‐printed visible‐light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics. 
    more » « less